Tendências de Inteligência Artificial para 2024

A Inteligência Artificial (IA) foi um dos temas mais discutidos em 2023, especialmente após o lançamento do ChatGPT. Essa tecnologia está presente em diversos setores, sendo utilizada por empresas para automatizar tarefas, melhorar a eficiência dos processos, analisar dados e identificar tendências de mercado. À medida que a IA se torna mais presente em nosso cotidiano, as ferramentas se tornam mais robustas, rápidas e sofisticadas, capazes de resolver tanto situações simples quanto complexas.

Para o ano de 2024, algumas tendências de Inteligência Artificial se destacam. Primeiramente, temos os ecossistemas de dados em nuvem, que permitirão às organizações lidar com desafios de dados distribuídos e integrar fontes externas ao seu ambiente, proporcionando escalabilidade, acessibilidade, eficiência de custos, integração, segurança e atualizações contínuas. A automação de processos também será uma tendência em 2024, permitindo que mais pessoas tenham acesso aos benefícios da IA no dia a dia de trabalho e nas tomadas de decisão, liberando os profissionais para se concentrarem em responsabilidades essenciais.

Outra tendência é a Inteligência Artificial Generativa, que permitirá às empresas aproveitar os benefícios da IA de maneira mais acessível e eficiente, acelerando a produção de informações, melhorando a criatividade e automatizando tarefas que antes exigiam muito tempo e recursos. Além disso, a sofisticação do Machine Learning continuará a aumentar em 2024, permitindo que as máquinas se tornem cada vez mais autônomas e eficientes, processando grandes volumes de informações, identificando padrões e realizando previsões com precisão.

Essas tendências refletem o rápido crescimento e o investimento acelerado em IA em todo o mundo, com empresas implementando essa tecnologia e expandindo seus negócios no universo tecnológico. O mercado global de Inteligência Artificial deve atingir números expressivos até 2030, impulsionado pelo aumento dos investimentos e pela busca por inovação.

Compartilhe:

Share on facebook
Share on twitter
Share on telegram
Share on whatsapp
você pode gostar de

Leonardo Bonato Felix

Tem graduação (UFSJ, 2002), mestrado (UFMG, 2004) e doutorado(UFMG, 2006) também em Engenharia Elétrica. Foi pesquisador visitante da University of Southampton-UK (2019-2020). É professor do Departamento de Engenharia Elétrica da UFV (2006-presente), nas disciplinas de Inteligência Computacional, Sinais e Sistemas, Modelagem e Identificação de Sistemas, Introdução à Engenharia Biomédica, Eletrônica, etc. É pesquisador 1D CNPq, atuando no processamento de sinais biológicos, teoria da detecção e aplicações de inteligência artificial.

Domingos Sárvio Magalhães Valente

Possui graduação em Engenharia Agrícola e Ambiental pela Universidade Federal de Viçosa (2003), mestrado em Engenharia Agrícola pela Universidade Federal de Viçosa (2007) na área de concentração em Pré-Processamento e Armazenagem de Produtos Agrícolas, doutorado em Engenharia Agrícola pela Universidade Federal de Viçosa (2010) na área de concentração em Mecanização Agrícola. Pós-doutorado na University of Illinois (Urbana-Champaign) nos Estados Unidos. Atualmente é Professor Associado da Universidade Federal de Viçosa, no Departamento de Engenharia Agrícola, atuando nas Áreas de Mecanização Agrícola, e Agricultura de Precisão e Digital.

José Augusto Miranda Nacif

Professor no Instituto de Ciências Exatas e Tecnológicas (IEF) do Campus UFV-Florestal da Universidade Federal de Viçosa (UFV). Possui mestrado e doutorado em Ciência da Computação (2004 e 2011) pela Universidade Federal de Minas Gerais e graduação em Engenharia de Controle e Controle e Automação (2001) pela Pontifícia Universidade Católica de Minas Gerais. Atualmente é orientador do Programa de Pós-Graduação em Ciência da Computação da UFV. É bolsista de produtividade do CNPq, nível 2. Tem experiência na área de Ciência da Computação, atuando principalmente nos seguintes temas: Internet das coisas, nanocomputação, computação de alto desempenho e aprendizado de máquina.

Moysés Nascimento

Possui graduação em Estatística pela Universidade Federal do Espírito Santo (2007), mestrado em Estatística Aplicada e Biometria pela Universidade Federal de Viçosa (2009) e doutorado em Estatística e Experimentação Agropecuária pela Universidade Federal de Lavras (2011). Realizou pós-doutorado em Análise de dados Genômicos, via Métodos Econométricos, na North Carolina State University (EUA, 2016). Atualmente, é professor Associado no Departamento de Estatística da Universidade Federal de Viçosa. Tem experiência na área de Probabilidade e Estatística Aplicada, com ênfase em Métodos Estatísticos Aplicados ao Melhoramento - Plantas e Animais, Inteligência Computacional e Aprendizado Estatístico.

Rodolpho Vilela Alves Neves

Possui graduação em Engenharia Elétrica pela Universidade Federal de Viçosa (2011), mestrado (2013) e doutorado (2018) em Engenharia Elétrica pela Universidade de São Paulo. Entre 2015 e 2016, foi pesquisador visitante na Aalborg University, Dinamarca. Atualmente, é professor adjunto no Departamento de Engenharia Elétrica da UFV. Atua principalmente nos temas geração distribuída e controle de sistemas de energia.

Sabrina de Azevedo Silveira

É graduada em Ciência da Computação pela Universidade Federal de Minas Gerais (UFMG-2008) e tem doutorado em Bioinformática (2013). Possui pós-doutorado no European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), em Cambridge, no Reino Unido (2019), e no Laboratório de Bioinformática e Sistemas (LBS), do Departamento de Ciência da Computação da Universidade Federal de Minas Gerais (2015). Atualmente, é professora no Departamento de Informática (DPI), da Universidade Federal de Viçosa (UFV). É orientadora do Programa de Pós-Graduação em Ciência da Computação da UFV (CAPES 4) e do Programa de Pós-Graduação em Bioinformática da UFMG (CAPES 7). Tem experiência na área de Ciência da Computação e Bioinformática, atuando principalmente nos seguintes temas: predição de função de enzima, mineração de dados, aprendizagem de máquinas, bases de dados biológicos e visualização de dados.

what you need to know

in your inbox every morning